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a b s t r a c t

Given the explosive growth of the Web images, image search plays an increasingly

important role in our daily lives. The visual representation of image is the fundamental

factor to the quality of content-based image search. Recently, bag-of-visual word model

has been widely used for image representation and has demonstrated promising

performance in many applications. In the bag-of-visual-word model, the codebook/

visual vocabulary plays a crucial role. The conventional codebook, generated via

unsupervised clustering approaches, does not embed the labeling information of images

and therefore has less discriminative ability. Although some research has been

conducted to construct codebooks with the labeling information considered, very few

attempts have been made to exploit manifold geometry of the local feature space to

improve codebook discriminative ability. In this paper, we propose a novel discrimi-

native codebook learning method by introducing the subspace learning in codebook

construction and leveraging its power to find a contextual local descriptor subspace to

capture the discriminative information. The discriminative codebook construction and

contextual subspace learning are formulated as an optimization problem and can be

learned simultaneously. The effectiveness of the proposed method is evaluated through

visual reranking experiments conducted on two real Web image search datasets.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Given the explosive growth of Web images, image
search plays an increasingly important role in our daily
lives. Extensive research has been conducted to improve
image search quality. Text-based image search leverages
mature information retrieval techniques to index and
search the images’ associated textual information (file-
name, surrounding text, URL, etc.). Although text-based
ll rights reserved.
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image search approaches are efficient for large-scale image
indexing, they still have their own limitations since textual
information cannot describe the rich content of images
comprehensively and substantially. As a consequence,
techniques with visual information involved are proposed
to build content-based image retrieval prototypes [1–4] or
enrich the textual descriptions via automatic image anno-
tation/concept detection [5,6]. In all of these methods,
visual representation of images plays the fundamental
role. In recent years, bag-of-visual-word (BOVW) model
has been widely used for image visual representation and
has demonstrated promising performance in image retrie-
val [7–9] and image categorization [10–12]. In BOVW, a
visual codebook needs to be constructed first by clustering
a set of local features such as SIFT [13] extracted from a
training image set. Then after quantizing all local descrip-
tors into visual words in the codebook, each image can
be represented as a histogram of number of visual
words count.
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Obviously, in BOVW model, the quality of codebook
directly affects the performance of image search. The most
popular visual codebook generation method is K-means
clustering [8,14]. It divides a large set of training SIFT
feature points in the high dimensional feature space into
clusters. Each cluster corresponds to a sub-space in the
feature space, and the centroid of cluster is treated as a
visual word. All visual words constitute a visual codebook.
Then, given a novel feature point, feature quantization
assigns it the visual word ID of its closest visual word in
the space. As the size of image database becomes larger, a
vocabulary tree method with hierarchical K-means [7] is
more preferred for hierarchical clustering and efficient
local feature quantization. Such kind of unsupervised
clustering based codebook generalization method is easy
for implementation and has been widely used in many
applications. However, it totally ignores the known label-
ing information of training images. As a consequence,
when the labeling information of the training images is
given, the codebook generated via unsupervised clustering
cannot embed the important image category information.
In other words, the semantic contexts are lost.

To address this problem, some learning-based code-
book construction methods [15–27] are proposed. These
methods try to build supervised visual word codebooks in
different ways: (1) refine/adapt original codebook based
on image semantic labels; (2) build class specific voca-
bularies for image categorization; (3) learn discriminative
and sparse coding models for object recognition; (4)
generate supervised codebook by minimizing mutual
information lost; (5) unify codebook construction with
classifier training to build semantic vocabulary, etc.
Although these approaches have improved traditional
codebook, most of them construct visual codebook based
on the raw local features. Very few attempts have been
made to exploit manifold geometry of the local feature
space. Actually, manifold learning has been proven an
effective way to reveal the intrinsic structure of the
original space and maximize the discriminative ability of
data in the learned subspace. Wu et al. [21] proposed to
construct semantic preserving codebook via distance
metric learning. However, this method suffers the follow-
ing two disadvantages: (1) additional region-level anno-
tation labels are required in the distance metric learning
stage. However, those region-level labels are usually
unavailable. (2) The codebook construction and semantic
distance metric learning are conducted in separate steps,
which can hardly achieve a joint optimum. To tackle these
problems, in this paper, we propose a novel supervised
discriminative codebook learning method which has the
following advantages:
(1)
 Our method introduces the subspace learning in code-
book construction and leverages its power to find a
contextual local descriptor subspace for embedding the
discriminative information. In the expected subspace,
images from different classes can be discriminated well.
(2)
 In our method, the codebook construction and contextual
subspace learning are formulated as an optimization
problem and they can be learned simultaneously. First,
the closed-form expression of the bag-of-visual-word
histogram based on the codebook in the desired new
subspace is derived. Then, the distance between histo-
grams of images from different classes is maximized, and
the distance between histograms of images from the
same class is minimized. This one-step optimization
avoids the accumulation of errors introduced in each
separated step.
(3)
 In our method, the discriminative ability of the code-
book is measured at the image level, i.e., directly
requiring the histogram representation of images be
similar or dissimilar. Compared with the local feature
level discriminative ability pursuing methods [21],
e.g., distinguishing local features from different object
parts, it is more reasonable since different objects
may contain some common local patches.
The rest of this paper is organized as follows. Related
work is summarized in Section 2. The proposed discrimi-
native codebook learning method is described in Section
3. The proposed discriminative codebook is applied on
Web image search reranking and the experimental results
are given in Section 4. And the summary and conclusion
are provided in Section 5.

2. Related work

Bag-of-visual-words (BOVW) model has been widely
used in large-scale content-based image search applica-
tions. In general, BOVW model contains two major com-
ponents: codebook generation and image representation.

2.1. Codebook generation

Codebook generation is to generate a set of visual
words so as to make BOVW model possible to represent,
index and retrieve images like documents. Sivic and
Zisserman [8] and Csurka et al. [14] proposed to cluster
the local features using K-means algorithm to construct
codebooks. The centroid of each cluster is treated as a
visual word. Nister and Stewenius [7] further proposed a
vocabulary tree to hierarchically cluster and quantize
local features efficiently for large scale image datasets.

Such kind of unsupervised clustering based codebook
generalization method is easy for implementation, but
totally ignores the known labeling information of training
images. To address this problem, some learning-based
codebook construction methods are proposed. Moosmann
et al. [15] built supervised visual word codebook using
randomized clustering forest. In this method, the image
semantic labels were adopted as stopping test in tree
building. Instead of using the trees for classification, each
leaf was treated as a visual word. Jurie and Triggs [16]
adopted mean-shift based approach for codebook genera-
tion to deal with clustering bias problem. Zhang et al. [23]
and Liu et al. [19] refined the initial code words to
build class-specific vocabularies for image categorization.
Perronnin et al. [17] proposed universal codebook and
class codebook to describe the content of all the consid-
ered classes of images and the adaptive class-specific
content respectively. Each image was then represented
by a set of histograms derived from both the universal
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codebook and class codebook. Mairal et al. [20] proposed
to learn discriminative and sparse coding models for
object categorization. This method required the label of
each encoded vector. Lazebnik and Raginsky [22] gener-
ated supervised codebook by minimizing mutual infor-
mation lost between features and labels during the
quantization step. Yang et al. [27] proposed to unify the
codebook construction with classifier training, and then
encode images by a sequence of visual bits that constitute
the semantic vocabulary. Wu et al. [21] proposed to
construct semantic preserving codebook via distance
metric learning. It first segmented the objects in images
into different parts and the semantic labels of those parts
were tagged by users. A distance metric was learned
by minimizing/maximizing the distance between SIFT
features extracted from the same/different semantic
parts. Then a codebook was generated by clustering SIFT
features with the learned distance metric.

2.2. Image representation

To represent images in BOVW model, local feature
extraction is the first step, which extracts interest points
in images by interest point detection. The detected inter-
est points should have high repeatability over various
changes. Difference of Gaussian (DoG) [13], MSER [28],
and Hessian affine [29] are the three most popular
detectors. After interest point detection, feature descrip-
tion is to generate a descriptor to describe the visual
appearance of the local region centered at the interest
point. The most popular local feature descriptor is SIFT
feature [30], which is invariant to image rotation, scale
and is also robust to affine distortion, addition of noise,
and illumination changes.

Usually, several hundred or thousand local features
can be extracted from a single image. With visual code-
book defined, these high dimensional local features can be
quantized to visual words in codebook by assigning a
visual word ID to each feature. Then, a compact image
representation can be achieved as a ‘‘bag’’ of visual words.
The simplest feature quantization method is to find the
closest (the most similar) visual word of a given feature
by linear scanning all the visual words in the codebook .
However, liner scanning is very time consuming espe-
cially in large-scale image applications. Therefore, an
efficient approximate nearest neighbor search based on
hierarchical vocabulary tree was proposed to propagate
the query feature vector from the root node down the tree
by comparing the corresponding child nodes and choosing
the closest one [7]. In [31], a descriptor-dependent soft
assignment scheme was also proposed to quantize a
feature vector to a weighted combination of several visual
words.

3. Supervised discriminative codebook learning

In this paper, we focus on codebook generation, which
plays a key role of the BOVW model. A supervised
discriminative codebook learning method is proposed.
The framework of the proposed approach is illustrated
in Fig. 1, which consists of three steps. In step 1, local
descriptors/features from a set of training images in L

different classes are extracted. The scale-invariant feature
transform (SIFT) [13] local descriptor is adopted in this
paper. In step 2, a conventional unsupervised codebook
can be generated first by using the K-means clustering
approach in the original raw SIFT feature space. However,
this unsupervised codebook has limited discriminative
ability since it does not embed the labeling information in
the training set. In order to utilize the known label
information to build a better codebook, in step 3, a
contextual subspace with U as the projection matrix and
a discriminative codebook C are learned to encode the
discriminative information contained in the training
image set. The objective subspace and codebook in the
learned subspace should satisfy two basic expectations:
(1) the bag-of-visual-word histograms of images within
the same class are similar; (2) the bag-of-visual-word
histograms of images from different classes are dissimilar.

Suppose the training image set consists of M images
I¼{I1,y,IM}from L classes. Their corresponding class
labels are f¼[f1,y,fM]T, where fiA{1,y,L}, i¼1,y,M. The
local features are first extracted from all images in I. The
whole local feature set is represented as X¼[x1,x2,y,
xN]ARD*N, where xi is a local descriptor, D is the dimension
of the local feature, and N is the total number of local
features. In this paper, the 128 dimensional SIFT local
descriptor is adopted as the local feature, thus D¼128 here.

Our aim is to learn a contextual subspace U and a
codebook C in the subspace which has the maximum
discriminative power of separating images from different
classes and keeping images from the same class close to
each other in this new subspace. In other words, we try to
find an optimal subspace projection matrix UARD*d which
projects the X in the original feature space into Y (the new
subspace), i.e., Y¼UTX. Therefore, the whole feature set in
the new space can be represent as Y¼[y1,y2,y,yN]ARd*N,
where yi is a local descriptor in the learned subspace. By
quantizing each local feature in the new space into the
nearest visual word in the discriminative codebook C,
each image can be represented as a bag-of-visual-word
histogram in the new space.

Denoting the histogram representation of image Ii in
the new subspace as ti, our objective function is

max
Y

X
ðIi ,IjÞ2D

Jti�tjJ
2
�a
X
ðIi ,IjÞ2s

Jti�tjJ
2

ð1Þ

where a is a trade-off parameter, S¼{(Ii,Ij)9fi¼ fj} is the similar
image pairs set which consists of image pairs belonging to
the same class, and D¼{(Ii,Ij)9fiafj} is the dissimilar image
pairs set which consists of image pairs belonging to different
classes. Problem (1) requires that images in the learned
optimal subspace, which are represented in bag-of-visual-
word histogram based on the learned codebook, should be
close to each other if they belong to the same class and
should be far away from each other if they belong to different
classes. With these constraints, discriminative ability of the
codebook is guaranteed.

The challenging issue in problem (1) is how to derive ti

with both C and U unknown. The conventional hard quanti-
zation methods (e.g., the nearest neighbor) do not work here,
since solution of ti is required to have a closed-form



Fig. 1. Illustration of the classic unsupervised codebook and our proposed discriminative codebook learning framework.

X. Tian, Y. Lu / Signal Processing 93 (2013) 2284–2292 2287
expression regarding to C and U in problem (1). In order to
solve this problem, we propose to use the soft quantization
method which can express ti with C and U effectively.
Specifically, each local feature yARd*1 in the subspace is
assigned to the codebook C by solving the problem:

min
b

Jy�CbJ2
ð2Þ

where b is the weighting coefficients. The solution to
problem (2) with ridge regression [32] is b¼(CTCþlI)�1CTy,
where l is the coefficient to balance the capacity and
complexity of the ridge regression model.

Then the bag-of-visual-word histogram t¼ ½t1, � � � ,
tH�

T 2 RHn1 of image I in the new subspace can be
expressed as

t¼
X

yi2I
bi ¼ CTCþlI

� ��1
CT
ðYsÞ ð3Þ

where sARN*1 is a binary indicator vector with si¼1 if
xiAI, otherwise si¼0. H is the number of visual words in C.

Based on (3), the difference between two histograms ti

and tj, which correspond to images Ii and Ij respectively,
can be calculated as

ti�tj ¼ CTCþlI
� ��1

CT
ðYsiÞ� CTCþlI

� ��1
CT
ðYsjÞ

¼ CTCþlI
� ��1

CTY si�sj

� �
ð4Þ

Substituting (4) into objective function (1), we obtain:

max
Y

X
ði,jÞ2D

Jti�tjJ
2
�a
X
ði,jÞ2s

Jti�tjJ
2

¼max
Y

X
ði,jÞ2D

trððti�tjÞðti�tjÞ
T
Þ�a

X
ði,jÞ2s

trððti�tjÞðti�tjÞ
T
Þ

¼max
Y

X
ði,jÞ2D

trððCTCþlIÞ�1CTYðsi�sjÞððC
TCþlIÞ�1

�CTYðsi�sjÞÞ
T
Þ�a

X
ði,jÞ2s

trððCTCþlIÞ�1CTYðsi�sjÞ
�ððCTCþlIÞ�1CTYðsi�sjÞÞ
T
Þ

¼max
Y

X
ði,jÞ2D

trððCTCþlIÞ�1CTYðsi�sjÞðsi�sjÞ
T

�YTCððCTCþlIÞ�1
Þ
T
Þ�a

X
ði,jÞ2s

trððCTCþlIÞ�1

�CTYðsi�sjÞðsi�sjÞ
TYTCððCTCþlIÞ�1

Þ
T
Þ

¼max
Y

tr ðCTCþlIÞ�1CTY
X
ði,jÞ2D

ðsi�sjÞðsi�sjÞ
T-a

  

�
X
ði,jÞ2s

ðsi�sjÞðsi�sjÞ
T

!
YTCððCTCþlIÞ�1

Þ
T

!

¼max
Y

trððCTCþlIÞ�1CTYLYTCððCTCþlIÞ�1
Þ
T
Þ ð5Þ

where L¼
P
ði,jÞ2D

ðsi�sjÞðsi�sjÞ
T-a
P
ði,jÞ2s

ðsi�sjÞðsi�sjÞ
T and Y¼

UTX.
The codebook C is approximated by the projection of an

initial codebook ~C 2 RDnH obtained in original space, i.e.,
C¼UT ~C. By imposing UTU¼I, problem (5) can be rewritten as

max
Y

trððCTCþlIÞ�1CTYLYTCððCTCþlIÞ�1
Þ
T
Þ

¼max
U

trðð ~C
T
UUT ~CþlIÞ�1 ~C

T
UUTXLXTUUT ~C

�½ð ~C
T
UUT ~CþlIÞ�1

�TÞ ð6Þ

Since (IþAB)�1A¼A(IþBA)�1, we obtain that

ð ~C
T
UUT ~CþlIÞ�1 ~C

T
U¼ ~C

T
UðUT ~C ~C

T
UþlIÞ�1

¼ ~C
T
UðUT ~C ~C

T
UþlUTUÞ�1

¼ ~C
T
UðUT

ð ~C ~C
T
þlIÞUÞ�1

¼ ~C
T
UUT
ð ~C ~C

T
þlIÞ�1U ð7Þ

Substituting (7) into problem (6), we obtain:

max
Y

trððCTCþlIÞ�1CTYLYTCððCTCþlIÞ�1
Þ
T
Þ

¼max
U

trð ~C
T
UUT
ð ~C ~C

T
þlIÞ�1UUTXLXTUUT
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�½ð ~C ~C
T
þlIÞ�1

�TUUT ~CÞ

¼max
U

trð ~C
T
UUTGUUTXLXTUUTGTUUT ~CÞ ð8Þ

where G¼ ~C ~C
T
þlI

� ��1

.
Problem (8) can be solved via gradient descent algo-

rithm as given in Algorithm 1 with

D Uð Þ ¼
@trð ~C

T
UUTGUUTXLXTUUTGTUUT ~CÞ

@U

¼ 2 ~C ~C
T
UUTGUUTXLXTUUTGTU

þ2GUUTXLXTUUTGTUUT ~C ~C
T
U

þ2GTUUT ~C ~C
T
UUTGUUTXLXTU

þ2XLXTUUTGTUUT ~C ~C
T
UUTGU ð9Þ

In (8), the C is approximated by the projection of the
initial codebook obtained in the original space by C¼UT ~C.
Based on the learned space U, the updated codebook ~C
can be derived by clustering local features Y in the new
space. With the updated ~C, a new subspace projection
matrix U can be obtained again by solving problem (8).
After repeating this iterative learning for several times,
the optimal U and C will be learned.

Algorithm 1.
//Gradient descent for solving problem (8)
Input: X, L, ~C
Initialization:
U¼random(D,d)//random initialization
U’orthogonalize(U)//orthogonalization
For i¼1:T
U’UþZD(U)
U’orthogonalize(U)
End for
Return U
3.1. Complexity analysis
Compared with the unsupervised K-means codebook
construction method, the extra time cost introduced in
our method is spent on solving problem (8). The complex-
ity analysis of learning problem (8) consists of three parts.
The first part is the time complexity of calculating
the XLXT which is O(D2NImgPairþDNImgNAvgSift), where
NImgPair¼9S9þ9D9 is the total number of image pairs in
similar and dissimilar sets, NImg is the number of training
images, and NAvgSift is the average number of sift features
in each training image. This part only needs to be
calculated once. The second part is the time complexity
of calculating G which is O(D3). The third part is the time
complexity of gradient descent algorithm, which is
O(TD2(HþdþD)), where T is the iteration number in
Algorithm 1 and H is the size of codebook. Since both d

and D are much smaller than H, the time cost in this part
can be approximated by O(TD2H). Taking all the three
parts into account, the total complexity is O(D2THþ

D2NImgPairþDNImgNAvgSift). In practical experiments, we
find that the Algorithm 1 usually converges soon after
few hundreds of iterations, i.e., T is about 500. NImgPair is
usually smaller than TH and NImgNAvgSift is smaller than
DTH. Therefore the total complexity can be approximated
by O(D2TH). For the unsupervised K-means codebook
generation, its complexity is O(T1DHNSift) where T1 is the
number of iterations in K-means and NSift is the total
number of sift features used for codebook construction.
To ensure the capacity of the codebook, NSift is usually
larger than 10,000. We can see that, the extra time cost
introduced in our proposed method is comparable to that
of K-means. Besides, the codebook learning process can be
done offline usually. Therefore, it is worth to learn more
powerful codebook with moderate extra computational
cost introduced.
3.2. Discussion

In the above sections, we illustrate our method with
training images from L different classes. Actually our
method can be extended to more general cases. According
to Eq. (1), all we need is the semantic similarity informa-
tion between images, i.e. whether two images are similar
(belonging to S) or dissimilar (belonging to D). The exact
class labels of these images are not essentially required.
Compared to other supervised codebook construction
methods which require class labels [15,17], our approach
has the following two advantages: (1) our approach does
not rely on exact class label information. It can be flexibly
applied to many real applications, which do not provide
image labels, but have the side information of similar and
dissimilar image pair constraints available, such as image
reranking; (2) in many applications, there may exist a
special class, which consists of images not belonging to
any pre-defined class. For example, in the image retrieval,
a negative class exists and contains all the irrelevant
images to a given query. Traditional supervised codebook
construction methods either ignore the images in the
special class since they do not belong to any pre-defined
class, or require them to be clustered together. However,
all the images in the special class are dissimilar in their
own way. Therefore, it is unreasonable to force them to be
close to each other. Our method can effectively deal with
this problem by only requiring images from this special
class be far away from the images in other classes,
without pushing images within the special class to be
gathered together.
4. Experiments

In this paper, we evaluate the proposed discriminative
codebook learning method on Web image search rerank-
ing. The major purpose is that if the learned codebook can
well capture discriminative information, more related
images should be re-ranked to the top and irrelevant
images should be ranked to the bottom. Other two state-
of-the-art codebook generation methods are selected for
comparison, including one unsupervised codebook learn-
ing method (KM) and one supervised codebook learning
method (ERCF). These methods are tested on two real
Web image search datasets: Web29 and MSRA-MM, and
their performance on image reranking are compared.
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4.1. Experimental dataset and setting

Web29 dataset contains 25,890 Web images collected
from Microsoft Bing image search engine based 29 pop-
ular queries. These 29 queries were selected from a
commercial image search engine query log and popular
tags from Flickr. These queries cover a vast range of
topics, including scene (‘‘sky’’, ‘‘winter’’), objects (‘‘funny
dog’’, ‘‘grape’’), named person (‘‘George W. Bush’’), etc. We
submitted each query to Bing, and collected at most top-
1000 images returned. Some example images in this
dataset are shown in Fig. 2. For each query, the relevance
labels of returned images are evaluated on two levels:
‘‘relevant’’ or ‘‘irrelevant’’. In this dataset, there are 49.80%
images labeled as relevant.

MSRA-MM is a public available dataset released by
Microsoft Research Asia [33]. It consists of 68 representa-
tive queries which are selected based on the query log of
Microsoft Bing search. For each query, about 1000 images
are collected from, resulting 65,443 images in total. For
each image, its relevance to the corresponding query is
labeled with three levels: ‘‘very relevant’’, ‘‘relevant’’, and
‘‘irrelevant’’. In this paper, we do not distinguish ‘‘very
relevant’’ and ‘‘relevant’’, and treat both as relevant ones.
Example images in this dataset are shown in Fig. 3.

To learn the discriminative codebook, labeled images
are required to form the similar image pairs set S and
dissimilar image pairs set D in Eq. (1). However, in real
image search applications, the image labels are unavail-
able. To solve this problem, we apply the popular pseudo
relevance feedback assumption to get pseudo-relevant
and pseudo-irrelevant images to construct the training
image set. Specifically, for each query, we can get the
initial ranks of the images from the search engine. Then,
with the pseudo relevance feedback assumption, the top
and bottom ranked images are treated as pseudo-relevant
and pseudo-irrelevant images respectively. In our experi-
ments, the top 20% returned images are pseudo-relevant
images and the bottom 20% returned images are pseudo-
irrelevant ones. With these label information, the discri-
minative codebook can be generated according to the
Fig. 2. Example images in
approach presented in Section 3 and the dimension of the
new space is set as 50 empirically.

The pseudo relevance feedback (PRF) reranking [34]
method is adopted to reorder the images for each query.
Specifically, it first trains a classification model with the
aforementioned pseudo-relevant and irrelevant images.
Then, all images are re-ordered according to the relevance
score predicted by the trained classifier. We compare the
reranking results performed on the images represented by
our proposed discriminative codebook (denoted DC) and
two other baseline codebooks. One is an unsupervised
codebook generated via K-means clustering algorithm
(denoted KM) and the other is a supervised codebook
generated via extremely randomized clustering forests
[15] (denoted ERCF).

For the ranking performance measurement, the non-
interpolated average precision (AP) [35], which is widely
used in information retrieval, is adopted. The AP averages
the precision values obtained when each relevant image
occurs. The AP of top-T ranked images AP@T is calculated as

AP@T ¼
1

ZT

XT

i ¼ 1

½precisonðiÞ � relðiÞ� ð10Þ

where rel(i) is the binary function on the relevance of the i-
th ranked image with ‘‘1’’ for relevant and ‘‘0’’ for irrelevant.
The ZT is a normalization constant that is chosen to
guarantee that AP@T¼1 for the perfect ranking result. The
precison(i) is the precision of top-i ranked images:

precisonðiÞ ¼
1

i

Xi

j ¼ 1

relðjÞ ð11Þ

4.2. Experimental results

Figs. 4 and 5 show the reranking performance on
datasets Web29 and MSRA-MM respectively, with images
represented by our proposed DC codebook, conventional
unsupervised KM codebook, and supervised ERCF code-
book. The MAP, average performance of AP over all
queries in the dataset, is reported. The text-based search
the Web29 dataset.



Fig. 3. Example images in the MSRA-MM dataset.

Fig. 4. Performance comparison of the text-based search baseline (Text), reranking using BOVW features generated with conventional supervised and

unsupervised codebook (ERCF, KM) and the proposed discriminative codebook (DC) on Web29.
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baseline (Text) of the search engine is also given for
reference. Both Figs. 4 and 5 show that the reranking
with our proposed DC codebook achieves better perfor-
mance than the classical unsupervised and supervised
codebooks consistently over various truncation levels.
Taking truncation level 60 as example, on Web29, ERCF
and KM improve the text-based search baseline (Text)
from 0.49 to 0.50 and 0.52 respectively, and our method
DC further improves it to 0.54. This phenomenon demon-
strates that our proposed discriminative codebook not
only outperforms unsupervised codebook, but also shows
superiority to conventional supervised one.

The supervised ERCF does not perform very well here
and sometimes it is even worse than unsupervised KM. The
possible reason is that in the Web image search reranking
problem, the pseudo class labels of relevant and irrelevant
images are very noisy. ERCF requires all images from the
same class should be alike, including images from the
irrelevant class. However, in this application, the images in
the irrelevant class have high visual appearance variance.
Each of these images is irrelevant in its own way. That is
why ERCF may fail. Instead, our DC does not have such a
limitation. It can flexibly require all relevant images be
similar, and relevant images and irrelevant images be
dissimilar without knowing their exact label information.
Therefore, our method has better capacity and achieves
better performance.

We further analyze the sensitivity of important trade-
off parameter in our method, i.e., the a in Eq. (1). This
parameter has two major influences. A smaller a reflects
the importance of separating relevant images from irre-
levant ones. A larger a denotes that more attention is
given to keep relevant images close in the new space.
Fig. 6 shows the performance of DC with various as’ on
Web29 dataset. The performance of Text (the text-based
search baseline) and KM are also given for comparison.
From Fig. 6, we find the following observations: (1) when
a is large, e.g., more than 0.5, the performance is
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unsatisfactory and even worse than KM. The major reason
is that in this situation, the similar image pairs informa-
tion is mainly preserved while important dissimilar image
pairs (discriminative) information is less considered.
This phenomenon reveals the importance of the discrimi-
native information in codebook learning. (2) The perfor-
mance of DC increases when a decreases, and reaches the
optimal value at about a¼0.05. However, when a
becomes smaller than 0.05, the MAP decreases. The major
reason is that in this case the discriminative information
of dissimilar image pairs plays the dominant role and the
similar image pairs information is ignored. It reveals that
both the similar and dissimilar image pairs information
reflect the discriminative information from different
aspects complimentarily. A suitable combination of them
is essential to achieve a good performance.

5. Conclusion

In this paper, we propose a novel supervised discrimi-
native codebook learning method, which not only finds a
contextual subspace to embed the discriminative infor-
mation, but also learns the contextual subspace and
discriminative codebook simultaneously. In the learned
new space, images from different classes can be well
separated and images from the same class are close to
each other. We apply the proposed method on Web image
search reranking problem and the experimental results on
two real Web image search datasets have demonstrated
the effectiveness of our approach and its superiority than
other state-of-the-art codebook learning methods. Future
work will be devoted to adapting the proposed frame-
work to more sophisticated quantization and manifold
learning methods. We are also investigating application of
the proposed method to other applications such as image
classification and concept detection.
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